在五軸聯動數控系統開發過程中,我們選擇工控機作為設計的基礎。工控機本身符合多種工業標準,是一種開放化的計算機系統,與常用的微機有良好的兼容性,有大量的軟硬件的支持。目前工控機底板插槽總線類型主要有兩種:ISA總線(工業標準總線)和PCI總線(外圍設備接口)。ISA總線的數據傳輸速率比較低,但已能滿足數控系統的需要。同時,高總線速率會對各功能模塊的硬件提出更高的要求。因此,我們選用ISA總線作為所有模塊設計的基礎。
由于五軸聯動插補算法復雜,有大量浮點運算,對實時性要求又較高,我們選用Pentium 166 CPU完成插補運算。另外,系統中各個坐標軸還需具備位置控制功能,位置控制實時性很強,且控制軸數比較多,該任務與插補共用一個CPU會導致數控系統主機負擔太重,實時性不易保證,而且故障風險過于集中,較好做法是每根軸采用一個獨立的CPU進行控制,采用層次式體系結構構成系統。根據位置控制CPU與主機交互信息方法的不同,分為兩種結構(見圖1)。第一種結構把位置控制板直接插到工控機底板的ISA插槽中,在這種情況下,主機與多個位控板之間直接進行信息傳輸,由于位控板CPU速度低,數據通訊階段會浪費主機CPU資源,控制軸數越多,主機CPU的效率就越低。此外,主機還需采取措施來保證多個位控板在時間上的準確同步。因此,我們選擇了第二種結構。第二種結構采用單獨的通訊機完成主機與位控板之間的信息傳遞。通訊機一方面通過雙口存儲器與主機之間進行信息交換,另一方面通過自建的局部總線與位控板進行信息交換。雙口存儲器容量為2kb,它同時也起數據緩沖器的作用。這種方案大大減少了主機用于信息交換的CPU時間。